
An Efficient Dynamic Data Replication for HDFS
using Erasure Coding

Franklin John#1, Suji Gopinath#2, Elizabeth Sherly#3
#1M.Phil. Scholar, Indian Institute of Information Technology and Management-Kerala

Trivandrum, Kerala, India
#2Research Scholar, University of Kerala

 Kerala, India
#3Professor, Indian Institute of Information Technology and Management-Kerala

Trivandrum, Kerala, India

Abstract— The Hadoop Distributed File System (HDFS)
component of Apache Hadoop helps in distributed storage of
big data with a cluster of commodity hardware. HDFS ensures
availability of data by replicating data to different nodes.
However, the replication policy of HDFS does not consider the
popularity of data. The popularity of the files tend to change
over time. Hence, maintaining a fixed replication factor will
affect the storage efficiency of HDFS. In this paper we propose
an efficient dynamic data replication management system,
which consider the popularity of files stored in HDFS before
replication. This strategy dynamically classifies the files to hot
data or cold data based on its popularity and increases the
replica of hot data by applying erasure coding for cold data.
The experiment results show that the proposed method
effectively reduces the storage utilization up to 40% without
affecting the availability and fault tolerance in HDFS.

Keywords— Big Data, Hadoop Distributed File System,
Dynamic data replication.

I. INTRODUCTION

Big Data is high-volume, high-velocity and high-variety
information that demands cost-effective, innovative forms
of information processing for enhanced insight and decision
making [1]. The extraction, storage and processing of big
data is beyond the ability of traditional data processing
techniques. Therefore a more sophisticated framework is
required to handle these data. Apache Hadoop [2] is one of
the best known platforms for distributed storing and
processing of big data across clusters of computers. The
storage component of Hadoop, Hadoop Distributed File
System (HDFS)[3][4] maintains a default replication factor
for each file as three, which is placed in separate nodes.

HDFS provides high performance access to data by
applying a static and default replication strategy. Though
HDFS ensures high reliability, scalability and high
availability, its static and default approach in data
replication requires large amount of storage space. With a
replication factor of three, a file is copied three times in
different nodes. If the size of a file is 1TB then, after
replication it will take 3TB of space. Furthermore, in
HDFS the files are replicated without considering the
popularity of the file. In real scenario, the access frequency
of every file in the file system is not accessed equally.
Some files are accessed frequently while some others stay
idle for a long period of time. By keeping replicas for these
idle files, a valuable amount of storage space will consumed

unnecessarily resulting in wastage of storage space, that
lead to bad effect of performance. If the number of copies
can be reduced for these files the storage space can be freed
and can be utilized by more frequently accessed files. But
reducing the number of copies increases the chance for data
loss. Therefore a data replication strategy which reduces the
replicas of under-utilized file without affecting the data
availability and fault tolerance has to be implemented.

In the proposed work, we present a dynamic data
replication strategy which focuses on a storage efficient
replication in HDFS without affecting the availability of
data. In this strategy data files are classified into hot and
cold based on the popularity of the data file in the Hadoop
cluster. The replica of the popular file is increased while the
replica of non-popular file is reduced to one and erasure
coding is applied on it to prevent from data loss. The result
shows that the proposed replication strategy reduces the
storage space utilization significantly without affecting the
availability constraint of HDFS. The remainder of this
paper is structured as follows. In section 2, we discuss the
related work and in section 3, we discuss the background
theory. In section 4, we present the data replication strategy
in detail with its architecture and algorithm. In section 5, we
include the implementation and evaluation results
demonstrating the storage efficiency of our proposed
algorithm. Finally in section 6, we conclude with the scope
of future work.

II. RELATED WORK

There have been a number of research efforts in recent
years which focus on the issues of replicating large files in
a network.

Wei et al. (2010) [5] proposed a cost-effective dynamic
replication strategy for the cloud storage systems which is
referred as CDRM. In this work the popularity of a data file
is calculated to create replica for the data file. After finding
the popular file the replica is placed in a suitable node
considering the blocking probability and capacity of the
nodes. This method concentrates on capturing the
relationship between availability and replica number. They
do not consider the availability of files that has low replica
factors.

Ananthanarayanan et al. (2011) [6] proposed an off-line
system called Scarlett, which periodically replicates popular
files using prediction method based on the historical usage

Franklin John et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 153-158

www.ijcsit.com 153

and jobs submitted for execution. It also distributes the
replicas among clusters with the goal of minimizing
hotspots. This method uses the concept of aging for replicas
to give space for new replicas. This may cause loss of some
files.

Abad et al. (2011) [7] proposed an adaptive data
replication for efficient cluster scheduling (DARE), which
replicates the data files dynamically to increase data locality.
The number of replicas to be created for each file and the
node to place the replica is determined based on the
probabilistic sampling and a competitive aging algorithm
independently at each node. The replication decision is
based on probability and does not consider the trends of
data utilization.

Kaushik et al. (2011) [8] proposed a predictive data
replication policy for GreenHDFS which proactively create
and delete replicas based on the file heat predictions. The
file’s heat is obtained based on the total number of access to
the file and the file’s hot lifespan. Replicas are created for
the hot files and the replica of cold file gets deleted. This
method fails to consider the management of cold data
efficiently and the directory structure is an important factor
in the anticipation for file accesses.

M. Bsoul et al. (2011) [9] proposed a replication strategy
for data grids which considers the factors like frequency of
requests, size of file, etc for replicating the data. This
strategy does not consider the scenario of varying user
behavior.

Cheng et al. (2012) [10] proposed an elastic replica
management system (ERMS), which uses an active/standby
model for the storage of data in HDFS. The data is
classified into hot or cold by using the complex event
processing engine and replica is created dynamically based
on this classification. Erasure code is applied to unpopular
data to save the storage space.

Kousiouris et al. (2013) [11] proposed a proactive data
management in Hadoop clusters which is based on
predictive data activity patterns. The method will predict
the future data demand in the Hadoop cluster using Fourier
series analysis [12]. In this method file is classified only in
limited replication scenarios.

Bui et al. (2016) [13] proposed an adaptive replication
management in HDFS based on supervised learning. This
method replicate the data files based on the predictive
analysis.The popularity of each data file is predicted using
probability theory and replicate the high potential files.
Erasure coding is applied to low potential files to ensure
reliability.

Qu et al. (2016) [14] proposed a dynamic replication
strategy (DRS) based on Markov Model for HDFS. In this
method a transition probability matrix is constructed based
on the accessing of files over time and then calculates the
stationary probability distribution of the system. Using the
results obtained data is classified as hot or cold. Extra
replica is created for hot data and replica of cold data is
deleted. This method is not considering the effective
management of cold data resulting in a probability of data
loss.

III. BACKGROUND THEORY

The Hadoop framework plays an important role in the
handling and processing of big data. Two main components
of Hadoop are MapReduce and Hadoop Distributed File
System (HDFS). The MapReduce is an algorithm which
helps in the processing of large data by implementing
parallel processing. MapReduce consist of two parts, a Map
task and Reduce task. These two tasks combined together
perform the processing tasks. The HDFS is the distributed
storage system which handles the storage of files in Hadoop.

HDFS provides a reliable and fault tolerant architecture
to store files. It follows a rack based clustering, in which
nodes are stored in racks and a cluster is formed combining
these racks. A file entered to the HDFS is divided into
blocks of equal size except the last block. These blocks are
replicated and stored in separate nodes. By default HDFS
creates three copies for each block. HDFS manages the
placement of these replicas in such a way that two blocks
are stored in the same rack and one in a separate rack. By
following this method HDFS ensures the availability of a
block even if a node fails or even if an entire rack goes
down.

The operations in HDFS consist of two types of nodes
DataNodes and NameNode. Namenode manages the the
operation in the HDFS cluster. Datanodes are the nodes in
which the blocks are stored. Namenode holds the
information about each datanode in the cluster and the
details of blocks stored in it. When a client wants to read or
write to HDFS, it first communicates with the namenode
and the namenode provides the information regarding the
blocks and nodes. After acquiring these information the
client communicates directly to the datanode for reading or
writing.

Erasure coding (EC)[15] is a method of data protection
in which data is broken into fragments, expanded and
encoded with redundant data pieces and stored across a set
of different locations on storage media [4]. Reed-Solomon
(RS) encoding is a popular erasure coding method. In this
method the data is divided into equal blocks and a set of
parity blocks are added to it. So even if some of the blocks
went missing the original file can be recreated with the help
of these parity blocks. Reed-Solomon (10,4) configuration
splits the file into 10 blocks consisting of 6 data blocks and
4 parity blocks. The proposed work combines the erasure
coding with the files in HDFS to provide fault tolerance and
availability. Reed-Solomon (10, 4) erasure coding is used in
this work, since it can survive four block failures. This
assures the prevention of data loss while cold data is stored
as erasure coded file.

IV. STORAGE-EFFICIENT DYNAMIC DATA REPLICATION

In HDFS, in order to ensure data availability and to
reduce the chance of data loss, each file is replicated across
a number of machines. The default replication factor in
HDFS is to create three replicas for each file. HDFS
replication strategy will not consider whether a particular
file is popular or not.

Franklin John et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 153-158

www.ijcsit.com 154

Fig. 1 Architecture of the proposed system.

Unnecessary replication of non-popular file will result in
storage overhead. In the proposed strategy, a dynamic data
replication algorithm is used to manage the replicas in
HDFS.

A. System Architecture

The architecture of the system is illustrated in the Fig.1.

The Replication Management System in the proposed
algorithm manages the replication of files in HDFS. This
module classifies the data files into hot data or cold data.
After classifying the data, the replication factor is increased
for the hot data and its replica is placed in data node. For
placement of replicated data Hadoop’s random placement
strategy is used. Erasure coding is applied for cold data to
ensure availability. Replication Management System does
these tasks with the help of HDFS Logging System. The
logging system provide details such as the number of files
accessed, their source, the nodes which accessed them,
frequency of access for each file, etc. The Logging system
obtains all these information from HDFS and provides it to
the Replication management System.

B. Replication Strategy

The algorithm divides each data into two categories as

hot data or cold data based on their popularity in the
Hadoop cluster. To determine the popularity of a file,
different parameters like number of accesses to that file,
number of nodes accessing the file and the replication
factor of the file are considered. To obtain these values the
log files in HDFS are analyzed. After analyzing and
extracting the required values the popularity for each file is
calculated. The Popularity Index (PIi) of a file fi, is
calculated as follows:

PIi = (aci * nci) / rfi

where, aci is the number of access received to a file fi, nci

denotes the number of nodes which accessed fi and rfi

represents the current replication factor of fi in HDFS. After
calculating the popularity of each file, a threshold value, T,
is obtained by calculating the mean of popularity values as
follows:

The value of T is used to classify the files in HDFS.

Popularity Index of each file is compared with the obtained
threshold value. The file with popularity greater than or
equal to T is classified as hot and the file with popularity
less than threshold is classified as cold. The popularity is
comparatively low for the files classified as cold.
Maintaining three copies for these least popular files is
wastage of space. So the replication factor of these files is
set to 1. This change in replication count will make these
files vulnerable for threats like data loss and unavailability.
To overcome this risk and to provide data availability, the
concept of erasure code is implemented. Reed-Solomon
(10,4) erasure coding is applied to cold files. Reed-
Solomon (10,4) divides a file into 10 equally sized blocks
with 6 data blocks and 4 parity blocks. All the files
classified as cold are encoded using Reed-Solomon. The
above process is iterative and depending on the popularity
of data over time, a data file will move from hot data to
cold data and vice versa.

The files in hot category are the files with high
popularity. These files will be accessed more than the cold
files. So it is important to maintain more than one copy for
these files. By providing more copies for the popular files,
computation performance of the Hadoop system can be
improved. In order to ensure the availability and to reduce
the overall performance time, an additional copy of the
popular file is created by incrementing the replication factor
of the hot file by one.

Franklin John et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 153-158

www.ijcsit.com 155

The detailed flowchart and algorithm of the proposed
replication strategy is given in Fig.2 and Fig.3 respectively.
The notations used in the algorithm are given in Table I.

TABLE I
NOTATIONS USED IN THE PROPOSED ALGORITHM

Notation Description

fi Accessed file

log The input log file

aci
Access count of file
Fi

nci
No.of nodes
accessed Fi

rfi
Replication factor
of Fi

PIi
Popularity Index of
Fi

N no. of files

T Threshold

hd Set of hot data

cd Set of cold data

Fig. 2 Flowchart of proposed replication algorithm.

Proposed Dynamic Data Replication Algorithm
Input: log
Begin
1. Set time interval
2. For each time interval

{
i. read logfile

ii. for each file fi
{

a. Find aci, nci, rfi
b. Calculate popularity index(PIi) of each

file
PIi = (aci * nci) / rfi

 }
 iii. Calculate the threshold,

 iv. For each file fi

 Compare threshold T
If PIi >= T
 hd fi
Else

cd fi
 v. For each fi in hd,

Increment rfi by 1.
 vi. For each fi in cd

Set rfi to1
Encode fi using Reed-Solomon erasure
code

 }end for
End

Fig. 3 Dynamic Data Replication Algorithm

V. IMPLEMENTATION AND EVALUATION

To test the proposed algorithm, a Hadoop cluster was
setup comprising of 10 nodes. The physical Hadoop cluster
comprises of one master node and nine slave nodes and the
version of a Hadoop distribution is 2.7. The master node
acts as both namenode and datanode, thus a cluster of ten
data nodes is formed. Each node is equipped with Intel
Core i5 (3.30GHz) CPU and 8 GB RAM. Files were copied
into HDFS from the local file system. Files of different size
and types are considered for the experimentation of the
algorithm. Various types of files including text, audio,
video files with sizes ranging from The 600MB to 4GB
were considered for this purpose. The files were divided
into blocks by HDFS with default block size of 128MB.
Initially, the replications for the files were three, which is
the default replication count in HDFS. These files were
accessed randomly from different nodes, at different time
intervals. The log files were analyzed. Then in regular
intervals the algorithm is executed in the HDFS cluster. The
algorithm checks the access count for each file and
calculates their popularity. Based on this popularity value
and threshold, files are classified into two – hot or cold.
Replication count for hot files is incremented and cold files
are encoded using Reed-Solomon erasure code. The
performance of the algorithm was analyzed comparing the

Franklin John et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 153-158

www.ijcsit.com 156

result obtained by using Hadoop default replication strategy
and the proposed data replication algorithm.

Five sample files of various file types were used for the
evaluation purpose. The difference in the storage space
used for the sample files while using default Hadoop
replication strategy and erasure coding is showed in
following table.

TABLE III
COMPARISON OF STORAGE SPACE UTILIZATION WITH HADOOP

STRATEGY AND ERASURE CODING

Original

Size (MB)

Hadoop
3 replica

size

Erasure
coded Size

File 1 735.7 2207.1 1169.4
File 2 1126.4 3439.2 1790
File 3 633.4 1900.2 1056
File 4 344.8 1034.4 575
File 5 224.6 673.8 374
Total 3064.9 9254.7 4964.4

The storage space utilization of both default replication

and the proposed algorithm was measured for each time
interval by using the same test data. The graphical
representation of the storage space utilized while
experimenting with the Hadoop’s default three replication
and proposed replication algorithm using the sample data
set over a specified time interval is given in Fig.4. and Fig.5
respectively.

Fig. 4 space utilization for Hadoop replication strategy

Fig. 5 Storage space utilization of the proposed replication

algorithm

Based on the result of the evaluation, a comparison was
done for the total storage space utilized in each time
interval by the existing replication strategy of Hadoop and
the proposed replication strategy. The graphical
representation of the result obtained is given in Fig.6.

Fig. 6 Comparison of total storage utilization by Hadoop
and the proposed algorithm

The result shows a significant reduction in storage space

utilization in different time intervals while applying the
proposed replication strategy. The proposed strategy
effectively reduces the storage utilization up to 40%.

VI. CONCLUSIONS

HDFS is equipped with a mechanism that uniformly
replicates every file without considering the popularity of
the file. However, this replication strategy still remains a
critical drawback with regards to the storage aspect. To
overcome this drawback a storage efficient dynamic data
replication strategy is implemented which can dynamically
adapt to changes in data popularity. In this work, the
storage space is optimized by reducing replication factor of
the cold files and applying erasure code. Application of this
strategy results in substantial storage-cost savings in
hardware expenditure. This work can be improved further
by optimizing the placement strategy of replicas in Hadoop
cluster. Also a comparison can be made based on the
performance of proposed strategy and existing method in
Hadoop.

REFERENCES
[1] The Gartner website [Online]. Available:

http://www.gartner.com/it-glossary/big-data/.
[2] The Apache Hadoop website. [Online]. http://hadoop.apache.org/.
[3] The Apache Hadoop Guide website. [Online].

http://hadoop.apache.org/common/docs/stable/hdfs_design.html.
[4] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, May).

The hadoop distributed file system. In Mass storage systems and
technologies (MSST), 2010 IEEE 26th symposium on (pp. 1-10).
IEEE.

[5] Wei, Q., Veeravalli, B., Gong, B., Zeng, L., & Feng, D. (2010,
September). CDRM: A cost-effective dynamic replication
management scheme for cloud storage cluster. In Cluster
Computing (CLUSTER), 2010 IEEE International Conference
on (pp. 188-196). IEEE.

Franklin John et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 153-158

www.ijcsit.com 157

[6] Ananthanarayanan, G., Agarwal, S., Kandula, S., Greenberg, A.,
Stoica, I., Harlan, D., & Harris, E. (2011, April). Scarlett: coping
with skewed content popularity in mapreduce clusters.
In Proceedings of the sixth conference on Computer systems (pp.
287-300). ACM

[7] Abad, C. L., Lu, Y., & Campbell, R. H. (2011, September). DARE:
Adaptive data replication for efficient cluster scheduling. In Cluster
Computing (CLUSTER), 2011 IEEE International Conference
on (pp. 159-168). IEEE

[8] Kaushik, R. T., Abdelzaher, T., Egashira, R., & Nahrstedt, K. (2011,
July). Predictive data and energy management in GreenHDFS.
In Green Computing Conference and Workshops (IGCC), 2011
International (pp. 1-9). IEEE.

[9] “Bsoul, M., Al-Khasawneh, A., Abdallah, E. E., & Kilani, Y.
(2011). Enhanced fast spread replication strategy for data
grid. Journal of Network and Computer Applications, 34(2), 575-
580.

[10] Cheng, Z., Luan, Z., Meng, Y., Xu, Y., Qian, D., Roy, A., ... &
Guan, G. (2012, September). Erms: An elastic replication
management system for hdfs. In Cluster Computing Workshops

(CLUSTER WORKSHOPS), 2012 IEEE International Conference
on (pp. 32-40). IEEE.

[11] Kousiouris, G., Vafiadis, G., & Varvarigou, T. (2013, October).
Enabling proactive data management in virtualized hadoop clusters
based on predicted data activity patterns. In P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), 2013 Eighth
International Conference on (pp. 1-8). IEEE.

[12] Papoulis, A. (1977). Signal analysis (Vol. 191). New York:
McGraw-Hill.

[13] Bui, D. M., Hussain, S., Huh, E. N., & Lee, S. (2016). Adaptive
Replication Management in HDFS based on Supervised
Learning. IEEE Transactions on Knowledge and Data
Engineering, 28(6), 1369-1382.

[14] Qu, K., Meng, L., & Yang, Y. (2016, August). A dynamic replica
strategy based on Markov model for hadoop distributed file system
(HDFS). In Cloud Computing and Intelligence Systems (CCIS),
2016 4th International Conference on (pp. 337-342). IEEE.

[15] Reed, Irving S.; Solomon, Gustave (1960), Polynomial Codes over
Certain Finite Fields, Journal of the Society for Industrial and
Applied Mathematics (SIAM), 8 (2): 300–304, doi:10.1137/0108018

Franklin John et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 153-158

www.ijcsit.com 158

